Development of gene expression-based score to predict sensitivity of multiple myeloma cells to DNA methylation inhibitors.
نویسندگان
چکیده
Multiple myeloma is a plasma cell cancer with poor survival, characterized by the clonal expansion of multiple myeloma cells (MMC), primarily in the bone marrow. Novel compounds are currently tested in this disease, but partial or minor patients' responses are observed for most compounds used as a single agent. The design of predictors for drug efficacy could be most useful to better understand basic mechanisms targeted by these drugs and design clinical trials. In the current study, we report the building of a DNA methylation score (DM score) predicting the efficacy of decitabine, an inhibitor of DNA methyltransferase (DNMT), targeting methylation-regulated gene expression. DM score was built by identifying 47 genes regulated by decitabine in human myeloma cell lines and the expression of which in primary MMCs of previously untreated patients is predictive for overall survival. A high DM score predicts patients' poor survival, and, of major interest, high sensitivity of primary MMCs or human myeloma cell lines to decitabine in vitro. Thus, DM score could be useful to design novel treatments with DMNT inhibitor in multiple myeloma and has highlighted 47 genes, the gene products of which could be important for multiple myeloma disease development.
منابع مشابه
Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma
Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was dete...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملEffects of Major Epigenetic Factors on Systemic Lupus Erythematosus
The pathogenesis of systemic lupus erythematosus (SLE) is influenced by both genetic factors and epigenetic modifications; the latter is a result of exposure to various environmental factors. Epigenetic modifications affect gene expression and alter cellular functions without modifying the genomic sequences. CpG-DNA methylation, histone modifications, and miRNAs are the main epigenetic factors ...
متن کاملMethylation Status of SMG1 Gene Promoter in Multiple Myeloma
Background: Epigenetic modifications, such as methylation can occur in multiple myeloma. SMG1is an important gene involved in cell growth which defect in methylation of its promoter leads to reduction of cell apoptosis and uncontrolled proliferation. In this study, we identified the methylation status of the SMG1 gene promoter in patients with multiple myeloma. Methods: Methylation status of S...
متن کاملO6-Methylguanine-DNA Methyltransferase and ATP-Binding Cassette Membrane Transporter G2 Promotor Methylation: Can Predict the Response to Chemotherapy in Advanced Breast Cancer?
Background: ATP-binding cassette membrane transporter G2 (ABCG2) gene is one of transporter family and well characterized for their association with chemoresistance. Promoter methylation is a mechanism for regulation of gene expression. O6-Methyl guanine DNA methyl transferase (MGMT) gene plays a fundamental role in DNA repair. MGMT has the ability to remove alkyl adducts from DNA at the O6 pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular cancer therapeutics
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2012